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Thermal data usefully complement other datasets used in geological interpretations, with the  capability of mapping, for instance, the distribution of rock types of distinct thermophysical properties, the distribution of polar ice caps, 
and its seasonal variations, or variations of dust thickness. Using THEMIS data, the apparent thermal inertia (ATI) and differential apparent thermal inertia (DATI) methods make it possible to map thermal inertia of the surface of 
Mars using available data only, with no data interpolation in contrary to conventional thermal inertia mapping, and is particularly efficient at mapping thermophysical contrasts on slopes >  10°. 
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Figure 1. a) albedo map of the Olympus Mons caldera: it 
indicates the presence of dust and fine sand in this region. 
Albedo map has been corrected against topography; b) 
temperature  difference map (K) of the Olympus Mons caldera: 
ΔT corrected map includes topography correction, darker regions 
indicates the presence of hardrocks exposures; c) thermal inertia  
map of the Olympus Mons caldera. One can see the area with 
higher thermal inertia values with numerous fractures exposing 
hard rocks. White zones excluded from calculations are related to 
incidence angles higher than 79°.

Figure 3. a) PFS/MEX  nighttime surface temperature on Mars in 12 different time  intervals from 
9 martian  years (MY26-34); b) nighttime surface temperature distribution on Mars averaged over 
9 martian years (MY26-34) and thermal inertia maps for Ls=90° – 150° and Ls=270° – 330°  
following ATI approach. The black lines indicate the the global boundary (along ~ 1000 tiu) 
between the high thermal inertia values interpreted as polar ice (the red domains) and the lower  
thermal inertia values representing martian soils (the blue  domains)

Figure 2. Comparison between TI and ATI (in tiu: J m-2 
K-1s-1/2) values obtained  on various slopes along profiles A to 
C.  Maps at the bottom: MRO/CTX image; TI map; ATI map. 
TI and ATIc are overlain onto the MRO/CTX image
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Figure 4. a) data and software used for thermal inertia 
calculation; b) research scheme of the ATI and DATI methods; 
c) TI values from Fergason et al., 2006 and ATIc values from 
this study for dune areas on Mars presented as box and
whisker  plots. Here, whiskers represent total range of values 
for test  dune fields from our test areas, whereas the blue  
boxes span from the arithmetic mean to ± 1 standard 
deviation.  The value of the red line (251 tiu) is calculated from 
the theoretical minimum dune grain size of 215 µm based on 
grain trajectory calculations and the particle size transition 
between suspension and saltation in Martian conditions 
(Edgett and Christensen, 1991) and empirical relationship 
between thermal conductivity and grain size derived by 
Presley and Christensen (1997) assuming a specific heat of 
850 J·kg-1/·K-1 and a bulk density of 1650.0 kg·m-3 as 
proposed by Mellon et al., 2008.  Similarly, the modelled TI 
values are derived assuming typical  470-600 µm grain size 
provided by Edgett and Christensen  (1991) 
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We present the three ways of using thermal data in the 
planetary mapping of the martian surface: 1) the distribution of 
rock and other materials (dust, sand) of distinct thermophysical 
properties in sloping areas of Valles Marineris, Mars; 2) the 
distribution and seasonal variation of ice in the martian polar 
caps based on the PFS/MEX data; 3) looking for the potential 
internal heat sources in thev olcanic area on Mras (Olympus 
Mons caldera) using DATI (Christensen et al., 2004).     
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